

Co-funded by the Erasmus+ Programme of the European Union

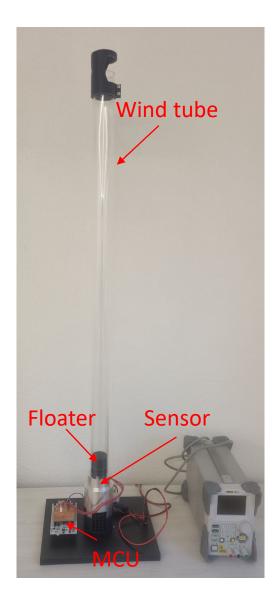
UbiLAB-Erasmus+

Faculty of Electrical Engineering and Computer Science

University of Maribor

8.11-12.11.2021

Networked Control Systems and Remote Laboratories


Erasmus+ project no. 2020-1-MK01-KA226-HE-094548

Introduction

UbiLAB

- System design
 - Hardware selection
 - Firmware development
 - Mathematical modelling
 - Testing
- Communication properties (TCP/IP, UDP, OPC...)
- Protocol development for NCS
- NCS Control system structure
- NCS Controller design

- Wind tube
- Floater levitating object
- Wind force controller
- Distance sensor

Í Íhil AB

Mathematical Modeling of WLS

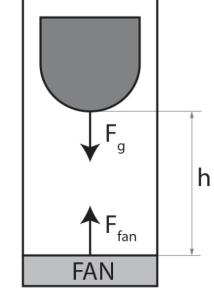
Second Newton law of motion:

 $m\ddot{h} = -mg + F_{fan}$

Second order differential equation:

 $\ddot{h} = -g + \frac{1}{m}F_{fan}$

State space equations:

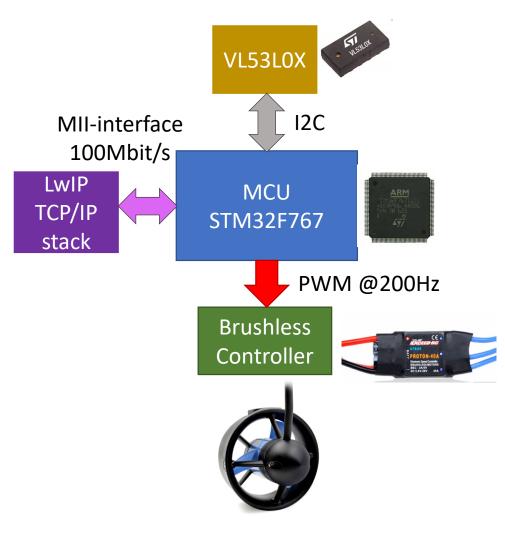

$$x_1 = x_2,$$

$$\dot{x_2} = -g + \frac{1}{m}F_{fan}$$

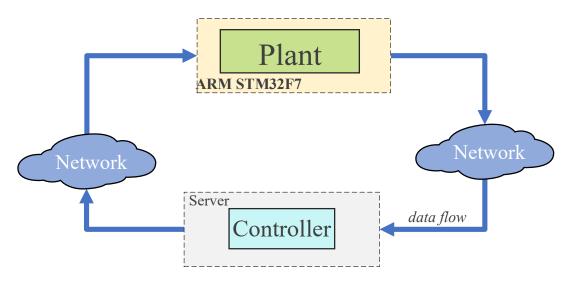
where is:

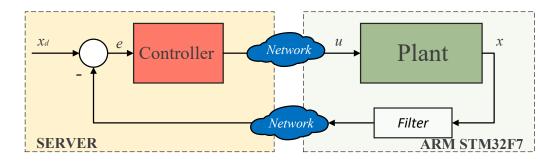
$$F_{fan} \approx \frac{1}{2} \varrho v_1^2 S$$

 ρ -air density, v- air velocity, S-cross surface



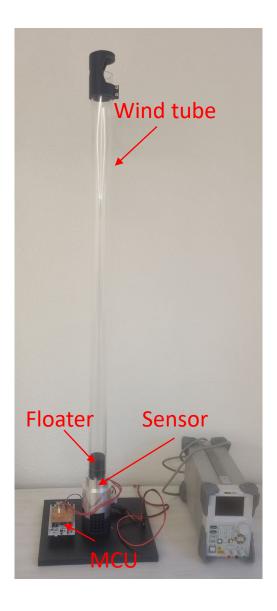
Wind Levitation System-Hardware


- Hardware
 - STM32F767 platform (NUCLEO-dev. board)
 - VL53L0X ToF distance sensor
 - Brushless wind thruster Wind turbine 14V- 80W
 - Brushless controller 10A/16V
 - Power supply 14V/4A
 - Floater 40g



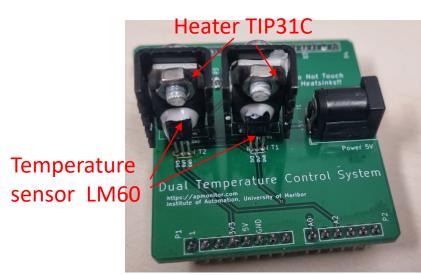
NCS Control System Structure of WLS

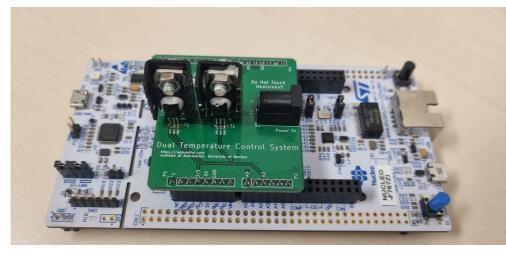
NCS network architecture



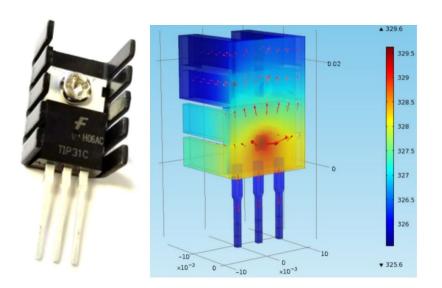
NCS feedback structure

- UDP protocol (LwIP-stack)
- Data transmission:
 - Height measurement (floater)
 - Velocity measurement
 - Turbine speed estimation
 - Round trip time measurements (RTT)
 - Server (UDP client/server)
 - Matlab script support
 - Matlab Simulink support
 - Python
 - Labview


Wind Levitation System-WLS


- Wind tube
- Floater levitating object
- Wind force controller
- Distance sensor

UbiLAB



- Heater TIP31C power transistor
- Temperature sensor LM60
- SMT32F7 LwIP-stack
- Power Supply 5V/2A

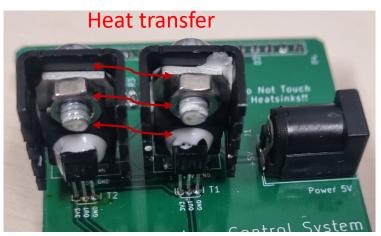
Mathematical Modeling of the Single Heater System(DTCS) – SISO case

https://apmonitor.com/pdc/index.php/Main/ArduinoModeling

Energy balance equation:

$$m\,c_prac{dT}{dt} = \sum \dot{h}_{in} - \sum \dot{h}_{out} + Q$$

Extended form with convection and radiation terms:


$$m c_p rac{dT}{dt} = U A \left(T_\infty - T\right) + \epsilon \sigma A \left(T_\infty^4 - T^4\right) + \alpha Q$$

Quantity	Value
Initial temperature (T_0)	296.15 К (23°С)
Ambient temperature (T ∞)	296.15 К (23°С)
Heater output (<i>Q</i>)	0 to 1 W
Heater factor ($lpha$)	0.01 W/(% heater)
Heat capacity (C_p)	500 J/kg-K
Surface Area (A)	1.2x10 ⁻³ m ² (12 cm ²)
Mass (m)	0.004 kg (4 gm)
Overall Heat Transfer Coefficient (U)	10 W/m²-K
Emissivity (ε)	0.9
Stefan Boltzmann Constant (σ)	5.67x10 ⁻⁸ W/m ² -K ⁴

Mathematical Modeling of the Dual Heater System (DTCS) – MIMO case

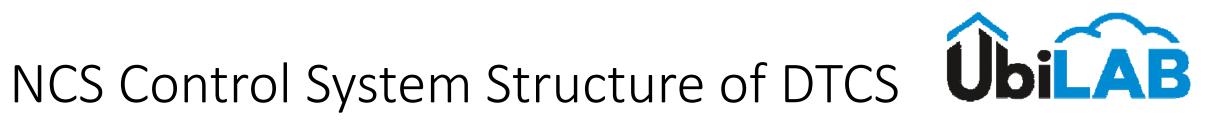
Input 1 Input 2

Energy balance equations:

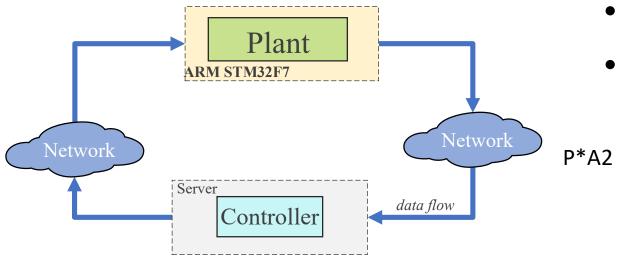
$$m c_p rac{dT_1}{dt} = U A \left(T_\infty - T_1
ight) + \epsilon \sigma A \left(T_\infty^4 - T_1^4
ight) + Q_{C12} + Q_{R12} + lpha_1 Q_1$$

$$rac{dT_2}{dT_2} = U A \left(T_\infty - T_1
ight) + \epsilon \sigma A \left(T_\infty^4 - T_1^4
ight) + Q_{C12} + Q_{R12} + lpha_1 Q_1$$

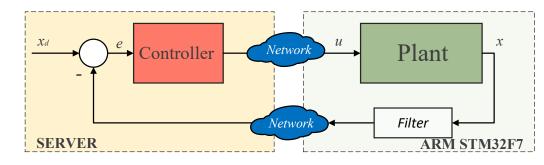
 $m c_p \frac{1}{dt} = U A (T_{\infty} - T_2) + \epsilon \sigma A (T_{\infty}^4 - T_2^4) - Q_{C12} - Q_{R12} + \alpha_2 Q_2$ where convection and radiative heat transfer between


the two heating elements are:

 $Q_{C12} = U \, A_s \, \left(T_2 - T_1
ight)$


 $Q_{R12}=\epsilon\,\sigma\,A\,\left(T_2^4-T_1^4
ight)$

Quantity	Value	
Heater output (Q_1)	0 to 1 W	
Heater factor (α1)	0.01 W/(% heater)	
Heater output (Q₂)	0 to 1 W	
Heater factor (α2)	0.0075 W/(% heater)	
Surface Area Not Between Heaters (A)	1.0x10 ⁻³ m ² (10 cm ²)	
Surface Area Between Heaters (A _s)	2x10 ⁻⁴ m ² (2 cm ²)	

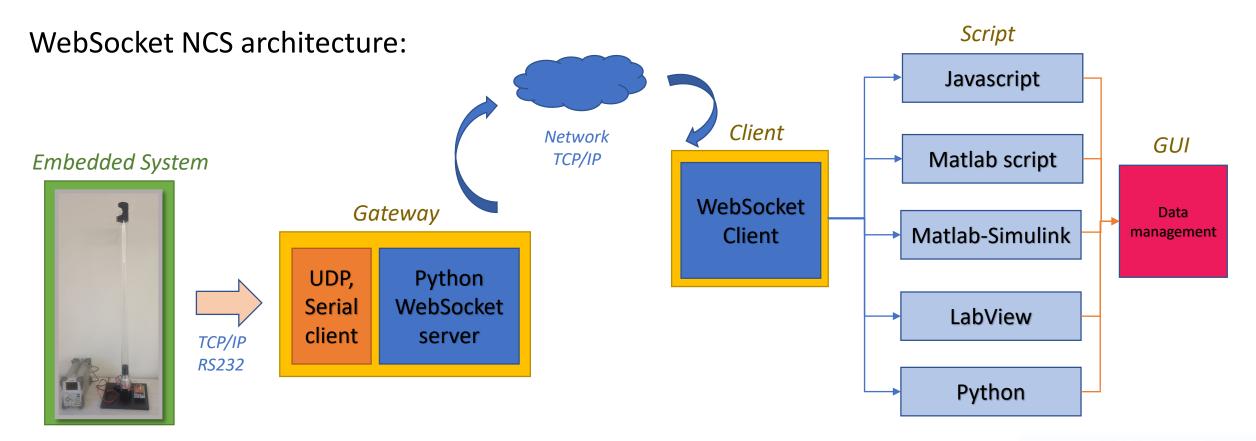


NCS network architecture

NCS feedback structure

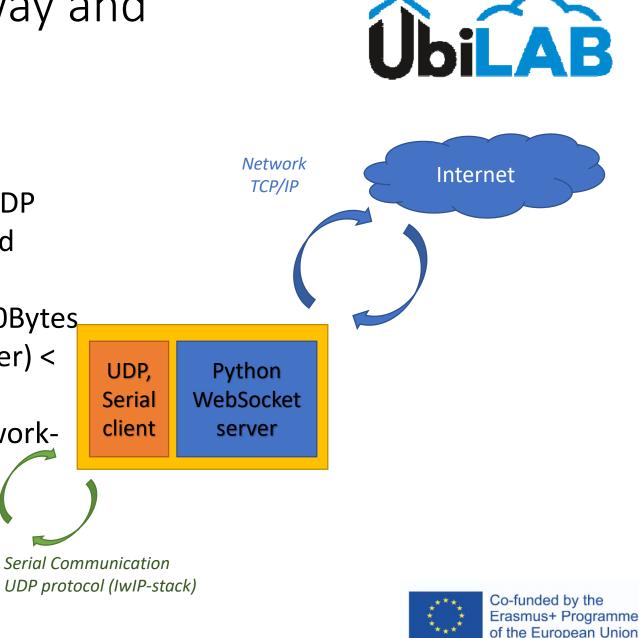
- UDP protocol (LwIP-stack)
- Data transmission:
 - Temeprature measurements
 - Round trip time measurements (RTT)
 - Server (UDP client/server)
 - Matlab script support
 - Matlab Simulink support
 - Python
 - Labview

NCS Control System Structure over WebSocket protocol



- Possible integration on different platforms
- Secure
- Fast data exchange
- Real-time operation
- Extension to different MOOC platforms
 - Remote laboratories
 - Collaborative learning
 - E-learning
- Support of different development programming environments
 - C/C++
 - Javascript
 - Matlab script
 - Matlab Simulink
 - Python
 - Labview

NCS Control System Structure over WebSocket protocol

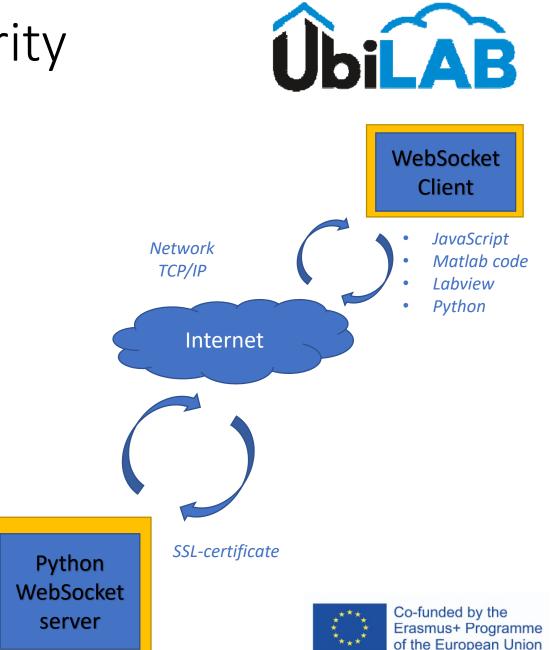

WebSocket Server – Gateway and Embedded System

- Real-time data strimming (parameters and measurements) with low latency
- Bidirectional communication over Serial or UDP protocol. Communication between Controlled System and WebSocket server
- Estimated latency for fixed data length of 200Bytes
 < 2ms (for serial) and UDP (with remote server) < 10ms
- Data transmission with time-badges for Networkdelay estimation
 Controlled System

Embedded

system

• CRC data encoding

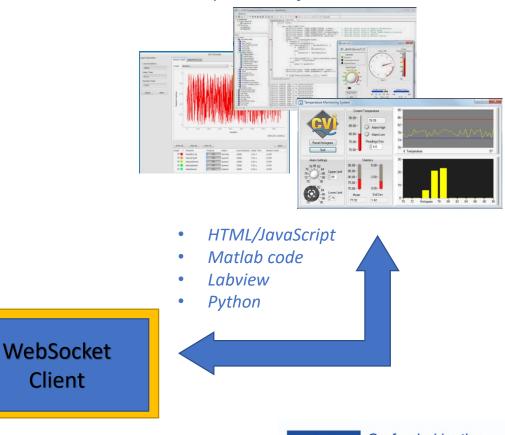

WebSocket Server and Security

- Real-time data strimming
- Secure connection with SSL-Certificate
- Registered domain on Institute for Automation-University of Maribor
- Network delay of approx. 40ms.
- Client request data from the server
- Purposeful data package for network delay estimation
- Package Round-Trip-Time (RTT) measurement for system safety and emergency shoot down.

UDP,

Serial

client

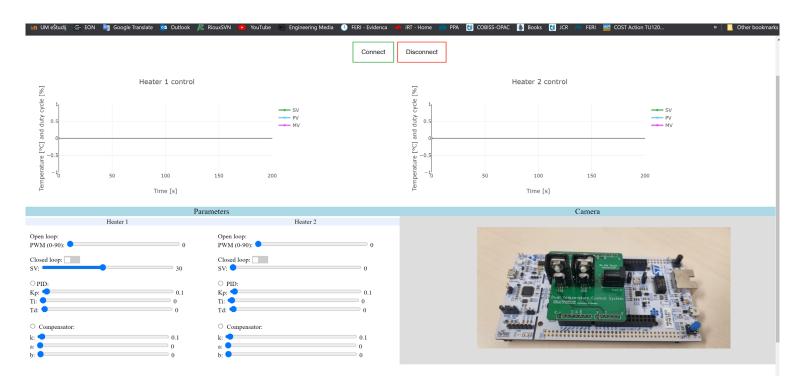


Client and Data presentation

- Data presentation with Graphical User Interface (GUI)
- Support for different programming language with integrated GUI modules
 - HTML/JavaScript
 - Matlab code and Matlab GUIDE
 - Labview interface
 - Python QT-designer
- Integration to the MOOC platforms

Graphical interface

HTML-JavaScript GUI for Wind Levitation Control as Remote Laboratory System



- Intuitive graphical user interface
- With possibility to run system in open-loop (without controller)
- Support of industrial controllers such as P, PI, PID structures.
- Support of nonlinear control methods, with adjustable parameters for Super Twister Nonlinear Controller.
- Streaming video 17

Wind-Levitation System								
	Height control	ntrol Velocity		Controller effort				
$\begin{array}{c} 800 \\ \hline \\$		200 100 -100 -200 0 20	40 60 80 time [s]	400 200 	20 40 time [5]	50 80 100		
· · · · · · · · · · · · · · · · · · ·		Control mode						
Open-Loop Input value Input: 8400	PID Controller Reference value Set point: 550 PID controller parameters Kp: 0.0 Ti: 0.0 Ti: 0.0		Twisted Controller		R			
		Server connection				_		

- HTML-JavaScript GUI for Temperature Controlv System as Remote Laboratory
- Intuitive graphical user interface
- With possibility to run system in open-loop (without controller)
- Support of industrial controllers such as P, PI, PID structures.
- Support of nonlinear control methods, with adjustable parameters for Super Twister Nonlinear Controller.
- Streaming video

HTML-JavaScript and MOOC

- Both HTML-JavaScript GUI can be further integrated into MOOC platform
- Systems are tested on Moodle platform
- HTML-GUI can be imported as Assignment
- All the functionalities of Moodle plugins can be used
 - Time dependencies (start the exercise, end of the exercise etc..)
 - Scheduling regarding enrolled users
 - Provide exercises to the specific groups of users
 - Exercise report submission
 - Exercises grading system
 - Communication Teacher and Students

Thank you!

